Fuzzification of Gamma-semigroups satisfying the identity the $x \alpha y \beta x = x \alpha y$

SHASHIKUMAR.H.C.¹ Dr.T.RAMI REDDY.²

Abstract – In this paper, we consider some properties and characterizations of fuzzy Γ - ideals and fuzzy bi Γ - ideals of Γ - semi groups and investigate some of their properties. We also characterize the properties related to Γ - semi groups and Fuzzy Γ - ideals using an identity $x \alpha y \beta x = x \alpha y$.

Index Terms— Γ - semi group, fuzzy bi Γ - ideal, fuzzy interior Γ - ideal, regular Γ - semi group, fuzzy subset, fuzzy sub Γ - semi group, fuzzy quasi Γ - ideal.

1 INTRODUCTION

The fundamental concept of a fuzzy subset was introduced by L.A.Zadeh in 1965[4].The concept of fuzzy ideals in semi groups was introduced by N.Kuroki in 1979[2]. N.Kuroki [3] introduced fuzzy left (right) ideals, fuzzy bi ideals and fuzzy interior ideals. Some basic concepts of fuzzy algebra such as fuzzy left (right) ideals and fuzzy bi ideals in a fuzzy semi group were introduced by Dib [7] in 1994.D.R.Prince Williams and K.B.Latha introduced fuzzy Γ - ideal and fuzzy bi Γ - ideal [1].

Definition 1.1: A mapping $\mu: S \to [0,1]$ is called fuzzy subset of *S* and the compliment of a set μ , denoted by μ , is the fuzzy subset in *S* defined by $\mu = 1 - \mu(x)$ for all $x \in S$. Let level set of a fuzzy subset μ of *S* is defined as $U(\mu, t) = \{x \in S / \mu(x) \ge t\}$. Note that Γ - semi group *S* can be considered as a fuzzy subset of itself and we write $S = C_S$ i.e. S(x) = 1 for all $x \in S$.

Definition 1.2: Let $S = \{x, y, z, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two non-empty sets then S is called a Γ -semi group if it satisfies (i) $x\gamma y \in S$ (ii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

Definition 1.3: A fuzzy subset μ of *S* is called a fuzzy sub Γ - semi group of *S* if $\mu(x\alpha y) \ge \min{\{\mu(x), \mu(y)\}}$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.4: A fuzzy subset μ of S is called a fuzzy left (right) Γ - ideal of S if

 $\mu(x\alpha y) \ge \mu(y) \ (\ \mu(x\alpha y) \ge \mu(x) \)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.5: A fuzzy subset μ of S is called a fuzzy Γ ideal of S if it is both fuzzy left Γ - ideal and fuzzy right Γ - ideal of S. **Definition 1.6:** A fuzzy sub Γ - semi group μ of S is called a fuzzy bi Γ - ideal of S if $\mu(x\alpha y\beta z) \ge \min{\{\mu(x), \mu(z)\}}$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Definition 1.7: A fuzzy sub Γ - semi group μ of S is called a fuzzy interior Γ - ideal of S if $\mu(x\alpha y\beta z) \ge \mu(y)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Definition 1.8: Let μ_1 and μ_2 be two fuzzy subsets of Γ semi group S. Then $\mu_1 \cap \mu_2$ and $\mu_1 \cup \mu_2$ are defined by $(\mu_1 \cap \mu_2)(a) = \min\{\mu_1(a), \mu_2(a)\}$ and $(\mu_1 \cup \mu_2)(a) = \max\{\mu_1(a), \mu_2(a)\}$.

We denote \wedge -minimum or infimum and \vee - maximum or suprimum then

$$(\mu_1 \cap \mu_2)(a) = \mu_1(a) \wedge \mu_2(a), (\mu_1 \cup \mu_2)(a) = \mu_1(a) \vee \mu_2(a).$$

Definition 1.9: Let μ_1 and μ_2 be any two fuzzy subsets of a Γ - semi group *S*. Then their fuzzy product $\mu_1 \circ \mu_2$ is defined by

$$\mu_1 \circ \mu_2 \text{ (a)=Sup} \{ \mu_1(x) \land \mu_2(y) \}$$

if $a = x \alpha y$ for $x, y \in S$ and $\alpha \in \Gamma$ and
 $\mu_1 \circ \mu_2 \text{ (a)=0}$ otherwise.

Definition 1.10: A fuzzy sub Γ - semi group μ of S is called a fuzzy bi Γ -ideal of a Γ - semi group S if $\mu(x\alpha y\beta z) \ge \mu(x) \land \mu(z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Definition 1.11: A fuzzy subset μ of a Γ - semi group S is a fuzzy quasi Γ - ideal of S if

$$(\mu \circ S) \cap (S \circ \mu) \subseteq \mu$$

 ^{1.}Shashikumar.H.C.is currently working as Assistant as professor of Mathematics, Government Science College, Hassan.Karnataka-573201.
 2.Dr.T.Rmi Reddy is currently working as Assistant professor of Mathematics.Acharya Institute of Technology, Bengalore.

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 ISSN 2229-5518

2. Main Results:

Theorem.2.1: Let S be a regular Γ – semigroup and S satisfy the identity $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$ then for any non-empty fuzzy set μ of S we have, $i)\mu(x\alpha y) = \mu(x)$ $ii)\mu(x\alpha x) = \mu(x)$ $iii)\mu((x\alpha)^n x) = \mu(x), n \in N.$ **Proof:**-Since S is a regular Γ - *semigroup*, we have for any $x \in S \Rightarrow x \alpha \ y \beta x = x$ for some $y \in S$ and $\alpha, \beta \in \Gamma$. i) Consider $\mu(x \alpha y) = \mu((x \alpha y \beta x) \alpha y)$ [:: x is regular in S] $= \mu(x\alpha(y\beta x\alpha y))$

[Associativity in S] $= \mu(x \alpha y \beta x)$ [using the given identity] $=\mu(x)$. [:: x is regular in S] $\cdot u(x \alpha y) = u(x)$

$$\dots \mu(x \alpha y) = \mu(x).$$

1

``

ii) From (i) we have
$$\mu(x \alpha y) = \mu(x)$$
.

replace y by x we get,

$$\mu(x\alpha x) = \mu(x)$$
. hence proved

iii) We see that
$$\mu(x \alpha x) = \mu(x)$$
.
 $\mu(x \alpha x \alpha x) = \mu(x \alpha y)$
where $x \alpha x = y \in S$
 $= \mu(x)$ From (i).
Again $\mu(x \alpha(x \alpha)^2 x) = \mu(x \alpha y)$
where $(x \alpha)^2 x = y \in S$
 $= \mu(x)$ From (i).
 $\therefore \mu((x \alpha)^3 x) = \mu(x)$.
In general $\mu((x \alpha)^n x) = \mu(x)$, $n \in N$.

Theorem 2.2: Let μ be a *fuzzy bi* Γ – *ideal* in a Γ – semigroup S and S satisfy identity the $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma,$ then μ is a fuzzy right Γ - ideal in S.

Proof:a fuzzy bi Γ – ideal in Let μ be а Γ – semigroup S, then

$$\mu(x\alpha \ y\beta \ z) \ge \min\{\mu(x), \mu(z)\}, \forall x, y, z \in S \text{ and } \alpha, \beta \in \Gamma$$
(1)

And is a fuzzy sub Γ – *semigroup* of S. Given S satisfy the $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$ We have to show that μ is a *fuzzy right* Γ -*ideal* of S.

i.e. $\mu(x\alpha y) \ge \mu(x), \forall x, y \in S \text{ and } \alpha \in \Gamma$. Consider $\mu(x \alpha y) = \mu(x \alpha y \beta x)$ [using the given identity] $\geq \min\{\mu(x), \mu(x)\}$ [using(1)] $\therefore \mu(x\alpha y) \ge \mu(x)$. $\therefore \mu$ is a fuzzy right Γ -ideal in S.

Theorem 2.3: Let μ be a fuzzy interior Γ - ideal in a Γ – semigroup S and S satisfy the identity $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$, then μ is a fuzzy left Γ – ideal in S.

Proof: Let μ be a fuzzy interior Γ -ideal in a Γ – semigroup S

$$\therefore \mu(x\alpha \ y\beta \ z) \ge \mu(y), \forall x, y, z \in S \ and \ \alpha, \beta \in \Gamma$$

Consider $\mu(x\alpha \ y) = \mu(x\alpha \ y\beta \ x)$
[using the given identity]
$$\ge \mu(y)$$

[$\because \mu$ is a fuzzy int erior Γ -ideal]
 $\therefore \mu(x\alpha \ y) \ge \mu(y), \forall x, y \in S \ and \ \alpha \in \Gamma$
 $\therefore \mu$ is a fuzzy left Γ -ideal of S .

Theorem 2.4:-Let μ be a fuzzy left Γ -ideal in a Γ – semigroup S and S satisfy the identity $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$, then μ is a fuzzy sub Γ – semigroup of S.

be a fuzzy left Γ -ideal in **Proof:** Let μ а Γ – semigroup \hat{S} $\therefore \mu(x\alpha y) \ge \mu(y), \forall x, y \in S \text{ and } \alpha \in \Gamma$ (2)To prove that μ is a fuzzy sub gamma-semi group. i.e. $\mu(x\alpha y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in S \text{ and } \alpha \in \Gamma$ Consider $\mu(x \alpha y) = \mu(x \alpha y \beta x)$ [using the given identity] $= \mu((x\alpha y)\beta x)$ [using associativity in S] $\therefore \mu(x\alpha y) \ge \mu(x)$. [using (2)] $\Rightarrow \mu(x \alpha y) \land \mu(x \alpha y) \ge \mu(x) \land \mu(x \alpha y)$ $\geq \mu(x) \wedge \mu(y)$ $[\mu \text{ isa } fuzzy \ left \ \Gamma - ideal \]$ $\mu(x \alpha y) \ge \mu(x) \land \mu(y)$

$$\therefore \mu(x\alpha y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in S \text{ and } \alpha \in \Gamma$$

$$\therefore \mu \text{ is a } fuzzy \text{ sub } \Gamma - semigroup \text{ of } S.$$

Theorem 2.5: Let μ be a fuzzy right Γ -ideal of a commutative Γ -semigroup S, then μ is a fuzzy sub Γ – semigroup of S.

IJSER © 2017

identity

 \Rightarrow

http://www.ijser.org

^{• 1.}Shashikumar.H.C.is currently working as Assistant as professor of Mathematics, Government Science College, Hassan. Karnataka-573201. 2.Dr.T.Rmi Reddy is currently working as Assistant professor of Mathematics.Acharya Institute of Technology, Bengalore.

Proof: Let μ be a fuzzy right Γ -ideal of a commutative Γ – semigroup S, then $\mu(x\alpha y) \ge \mu(x), \forall x, y \in S \text{ and } \alpha \in \Gamma$ To prove that μ is a fuzzy sub Γ - semigroup of S. We see that $\mu(x\alpha y) \ge \mu(x), \forall x, y \in S \text{ and } \alpha \in \Gamma$ $\therefore \mu(x\alpha y) \land \mu(y\alpha x) \ge \mu(x) \land \mu(y\alpha x)$ $\geq \mu(x) \wedge \mu(y)$ \therefore μ is fuzzy right Γ – ideal of S $\therefore \mu(x\alpha y) \land \mu(x\alpha y) \ge \mu(x) \land \mu(y)$:: S is a commutative $\therefore \mu(x \alpha y) \ge \mu(x) \land \mu(y)$

 $\therefore \mu(x\alpha y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in S \text{ and } \alpha \in \Gamma$ $\therefore \mu$ is a fuzzy sub Γ – semigroup of S.

Theorem 2.6: Let μ be a fuzzy left Γ -ideal in a Γ – semigroup S and S satisfy identity the $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$, then $\mu(x\alpha y) = \mu(y\alpha x).$

Proof:- Let μ be a fuzzy left Γ -ideal in а Γ – semigroup S

 $\therefore \mu(x\alpha y) \ge \mu(y), \forall x, y \in S \text{ and } \alpha \in \Gamma$ To prove that $\mu(x \alpha y) = \mu(y \alpha x)$ we shall prove that $\mu(x \alpha y) \le \mu(y \alpha x)$ and $\mu(x \alpha y) \ge \mu(y \alpha x)$ $\mu(x\alpha y) = \mu(x\alpha y\alpha x)$ Now consider [using the identity]

 $= \mu(x\alpha(y\alpha x))$ [using associativity in S] $\geq \mu(v \alpha x)$ $\therefore \mu$ be a fuzzy left Γ -ideal $\therefore \mu(x\alpha y) \ge \mu(y\alpha x)$ (3) Similarly consider $\mu(y \alpha x) = \mu(y \alpha x \alpha y)$ [using the identity]

 $= \mu(y \alpha(x \alpha y))$ [using associativity in S] $\geq \mu(x \alpha y)$ $\therefore \mu$ be a fuzzy left Γ -ideal $\therefore \mu(y \alpha x) \ge \mu(x \alpha y)$ (4).

 \therefore from (3) and (4) we have $\mu(x \alpha y) = \mu(y \alpha x)$.

Proof:-Let μ be a fuzzy left Γ -ideal of а Γ – semigroup S Given S satisfy the identity $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$ Then from theorem 2.4 $\mu(x\alpha y) \ge \min\{\mu(\dot{x}), \mu(y)\}, \forall x, y \in S \text{ and } \alpha \in \Gamma$ (5) Now $\mu \circ \mu(x) = V \{\mu(y) \land \mu(z)\}$ where $x = y \alpha z$ and $y, z \in S$ $\leq V \mu(y \alpha z)$ [from (5)] $\mu \circ \mu(x) \le \mu(y \,\alpha \, z)$ $\therefore x = v \alpha z$] $\mu \circ \mu(x) \le \mu(x)$ $\mu \circ \mu \leq \mu$.

Theorem 2.8: Let μ be a *fuzzy right* Γ -*ideal* of a commutative Γ – semigroup S then $\mu \circ \mu \leq \mu$.

Proof: Let μ be a fuzzy right Γ -ideal of a commutative Γ – semigroup S

... theorem from 2.5 $\mu(x\alpha y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in S \text{ and } \alpha \in \Gamma$ (6) $\mu \circ \mu(x) = V \{ \mu(y) \land \mu(z) \} \text{ where } x = y \alpha z \text{ and } y, z \in S \\ \leq V [\mu(y \alpha z) \text{ [from (6)]} \end{cases}$ $\mu \circ \mu(x) \le \mu(y \,\alpha \, z)$ $\therefore x = y \alpha z$] $\mu \circ \mu(x) \leq \mu(x)$ $\mu \circ \mu \leq \mu$

References:

[1]. D.R. Prince Williams_, K.B. Latha⁺ and E. Chandrasekeran "Fuzzy bi Γ -ideal in Γ -

semi groups» Hacettepe Journal of Mathematics and Statistics, Volume 38 (1) (2009), 1 – 15.

[2]. Kuroki, N. "Fuzzy bi-ideals in semi groups", Comment. Math. Univ. St. Paul. 28, 17-21, 1980.

[3]. Kuroki, N. "On Fuzzy ideals and fuzzy bi-ideals in semi groups, Fuzzy subsets and Systems" 5,

203-215, 1981.

[4]. Zadeh, L.A. "Fuzzy subsets", Information and Control, 8, 338-353, 1965.

[5]. Shabir, M. and Nawaz, Y. "Semi groups characterized by the properties of their anti fuzzy

Ideals". Journal of advanced Research in Pure Mathematics, 3, 42 -59. (2009).

[6]. Dib, K.A. "On Fuzzy spaces and Fuzzy group theory", Inform. Sci. 80, 253-282, 1994.

39

Theorem 2.7: Let μ be a fuzzy left Γ -ideal of a Γ – semigroup S and S satisfy the identity $x \alpha y \beta x = x \alpha y, \forall x, y \in S and \alpha, \beta \in \Gamma$, then $\mu \circ \mu \leq \mu$.